Gestão integral da segurança hídrica: diagnóstico, desafios e alternativas multissetoriais para o uso sustentável do recurso

Autores

  • César Adrian Labeguerre Nakada Secretaría Nacional de Formación del Talento del Partido Morado, Perú
  • Cinthia Angélica Lapa Oré Instituto de Investigación Geográfico Andino Rural
  • Leticia Tapia-Oré Instituto de Investigación Geográfico Andino Rural, Perú

Palavras-chave:

Segurança hídrica, gestão multissetorial, escassez hídrica, governança sustentável

Resumo

A pesquisa teve como objetivo analisar a situação hídrica no departamento de Ica (Peru), identificando os fatores que agravam a escassez hídrica e propondo estratégias integradas de gestão sustentável. Utilizou-se uma abordagem mista, combinando métodos qualitativos e quantitativos: entrevistas semiestruturadas com autoridades, especialistas e usuários, além de pesquisas realizadas com 295 pessoas de áreas urbanas e rurais. O estudo revelou que a escassez hídrica em Ica constitui um problema estrutural agravado pela superexploração de aquíferos, infraestrutura hídrica precária e coordenação institucional limitada. As partes interessadas concordaram com a necessidade urgente de promover soluções conjuntas, como recarga artificial de aquíferos, reuso de águas residuais, controle de poços ilegais e modernização de canais de irrigação. Concluiu-se que a segurança hídrica em Ica requer governança participativa e multissetorial, onde o Estado, as empresas e a sociedade civil compartilham responsabilidades para garantir o acesso equitativo e sustentável à água diante dos efeitos das mudanças climáticas.

Referências

Andrago,Angelakis, A. N., Asano, T., Bahri, A., Jimenez, B., & Tchobanoglous, G. (2018). Water reuse: From ancient to modern times and the future. Frontiers in Environmental Science, 6, 26. https://doi.org/10.3389/fenvs.2018.00026

Barichivich, J., Gloor, E., Peylin, P., Brienen, R. J. W., Schöngart, J., Espinoza, J. C., & Pattnayak, K. C. (2018). Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science Advances, 4(9), eaat8785. https://doi.org/10.1126/sciadv.aat8785

Budds, J., & Hinojosa, L. (2012). Restructuring and rescaling water governance in mining contexts: The co-production of waterscapes in Peru. Water Alternatives, 5(1), 119–137. https://www.wateralternatives.org/index.php/volume5/v5issue1/161-a5-1-8

Cai, W., Borlace, S., Lengaigne, M., et al. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4(2), 111–116. https://doi.org/10.1038/nclimate2100

Dai, L., Farrelly, M., & Rijke, J. (2022). Assessing the soundness of water governance. International Journal of Water Resources Development, 38(7), 1086–1106. https://doi.org/10.1080/02508060.2022.2048487

Delgado, E., Lazo, J., & Egúsquiza, A. (2025). Modeling and predicting LULC changes in Ica (Peru) 1990–2030. Environmental Sciences Europe, 37, 181. https://doi.org/10.1186/s12302-025-01181-y

Echevin, V., Koseki, S., Espinoza, J. C., & Takahashi, K. (2018). Forcings and evolution of the 2017 Coastal El Niño off northern Peru and Ecuador. Frontiers in Marine Science, 5, 367. https://doi.org/10.3389/fmars.2018.00367

Esteve-Llorens, X., Vázquez-Rowe, I., Moreira, M. T., & Feijoo, G. (2022). Beyond yields: environmental sustainability in Peruvian agro-exports. Science of the Total Environment, 819, 152083. https://doi.org/10.1016/j.scitotenv.2022.152083

Fernández-Escalante, E., Pedraza-García, P., & Calera, A. (2020). Evolution and sustainability of groundwater use from the Ica aquifers for the most profitable agriculture in Peru. Hydrogeology Journal, 28(8), 2601–2621. https://doi.org/10.1007/s10040-020-02176-6

Gómez, R., Del Villar, S., & Montero, E. (2023). Cooperative water-sharing agreements between highlands and coastal users: Tambo–Santiago–Ica basin. International Journal of Water Resources Development, 39(6), 927–948. https://doi.org/10.1080/07900627.2023.2165048

Gonzales, E., Álvarez, V., & Gonzales, K. (2025). Two decades of groundwater variability in Peru using GRACE/GRACE-FO (2003–2023). Applied Sciences, 15(14), 8071. https://doi.org/10.3390/app15148071

Grafton, R. Q., Williams, J., Perry, C. J., et al. (2018). The paradox of irrigation efficiency. Science, 361(6404), 748–750. https://doi.org/10.1126/science.aat9314

Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences, 109(9), 3232–3237. https://doi.org/10.1073/pnas.1109936109

Jaramillo, M. F., & Restrepo, I. (2017). Wastewater reuse in agriculture: A review of its limitations and benefits. Sustainability, 9(10), 1734. https://doi.org/10.3390/su9101734

Lankford, B. A., et al. (2023). Resolving the paradoxes of irrigation efficiency. Agricultural Water Management, 280, 108328. https://doi.org/10.1016/j.agwat.2023.108328

Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577–1600. https://doi.org/10.5194/hess-15-1577-2011

Mekonnen, M. M., & Hoekstra, A. Y. (2014). Water footprint benchmarks for crop production. Ecological Indicators, 46, 214–223. https://doi.org/10.1016/j.ecolind.2014.06.013

Mishra, S., et al. (2023). Use of treated sewage or wastewater as irrigation water: Impacts and opportunities. Case Studies in Chemical and Environmental Engineering, 8, 100428. https://doi.org/10.1016/j.cscee.2023.100428

Nemati, M., et al. (2023). Residential water conservation and the rebound effect. Water Resources Research, 59(12), e2022WR032169. https://doi.org/10.1029/2022WR032169

Opcionales adicionales (apoyan contexto Ica y Perú):

Angelakis, A. N., et al. (2014). Water reuse: Overview of current practices and trends. Water Utility Journal, 8, 67–78. https://www.ewra.net/wuj/pdf/WUJ_2014_08_07.pdf

Oshun, J., et al. (2021). Interdisciplinary water development in the Peruvian Andes (co-producción). Hydrology, 8(3), 112. https://doi.org/10.3390/hydrology8030112

Pei, D., et al. (2024). Agricultural water rebound effect and its driving factors. Agricultural Water Management, 297, 108739. https://doi.org/10.1016/j.agwat.2024.108739

Pronti, A., de Muro, P., & Rota, R. (2024). Land concentration, food exports and water grabbing in the Ica Valley, Peru. World Development, 179, 106378. https://doi.org/10.1016/j.worlddev.2024.106378

Rice, J., Wutich, A., & Westerhoff, P. (2016). Comparing de facto wastewater reuse and its public acceptance. Environmental Science & Policy, 61, 101–112. https://doi.org/10.1016/j.envsci.2016.03.004

Richey, A. S., Thomas, B. F., Lo, M.-H., et al. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5237. https://doi.org/10.1002/2015WR017349

Salmoral, G., et al. (2020). Reconciling irrigation demands for agricultural expansion with environmental sustainability: The case of Ica. Journal of Cleaner Production, 277, 123539. https://doi.org/10.1016/j.jclepro.2020.123539

Scanlon, B. R., et al. (2012). Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proceedings of the National Academy of Sciences, 109(24), 9320–9325. https://doi.org/10.1073/pnas.1200311109

Schwarz, J., et al. (2017). Globalization and the sustainable exploitation of scarce groundwater: The Ica–Villacurí aquifer. Journal of Cleaner Production, 147, 231–241. https://doi.org/10.1016/j.jclepro.2017.01.074

Takahashi, K., et al. (2019). The very strong coastal El Niño in 1925 in the far-eastern Pacific. Climate Dynamics, 52, 7389–7415. https://doi.org/10.1007/s00382-017-3702-1

Underhill, V. (2023). Global Groundwater: California, Palestine and Peru. Water Alternatives, 16(1), 191–203. https://www.water-alternatives.org/index.php/alldoc/articles/vol16/v16issue1/694-a16-1-11/file

Vázquez-Rowe, I., et al. (2016). Environmental profile of green asparagus in a hyper-arid environment. Journal of Cleaner Production, 112, 2505–2517. https://doi.org/10.1016/j.jclepro.2015.10.074

Vázquez-Rowe, I., et al. (2017). Sustainable water management in agriculture under hyper-aridity. Science of the Total Environment, 601–602, 425–437. https://doi.org/10.1016/j.scitotenv.2017.05.161

Xiong, R., et al. (2021). Improving the scientific understanding of the paradox of irrigation efficiency. Water Resources Research, 57(5), e2020WR029397. https://doi.org/10.1029/2020WR029397

Xu, H., et al. (2022). Drivers of the irrigation water rebound effect. Agricultural Water Management, 268, 107681. https://doi.org/10.1016/j.agwat.2022.107681

Yglesias-González, M., et al. (2023). Reflections on the impact and response to the Peruvian 2017 Coastal El Niño. PLOS ONE, 18(9), e0290767. https://doi.org/10.1371/journal.pone.0290767

Publicado

2025-10-11

Edição

Seção

Artículos

Artigos Semelhantes

1 2 3 4 5 6 7 8 9 10 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.