Comprehensive water security management: diagnosis, challenges, and multisectoral alternatives for sustainable use of the resource

Authors

  • César Adrian Labeguerre Nakada Secretaría Nacional de Formación del Talento del Partido Morado, Perú
  • Gloria Inés Barboza Palomino Universidad Nacional de San Cristóbal de Huamanga, Perú
  • Leticia Tapia-Oré Instituto de Investigación Geográfico Andino Rural, Perú

Keywords:

Water security, multi-sectoral management, water scarcity, sustainable governance

Abstract

The research aimed to analyze the water situation in the department of Ica (Perù), identifying the factors that exacerbate water scarcity and proposing integrated sustainable management strategies. A mixed approach was used, combining qualitative and quantitative methods: semi-structured interviews with officials, specialists, and users, as well as surveys conducted with 295 people from urban and rural areas. The study revealed that water scarcity in Ica constitutes a structural problem exacerbated by the overexploitation of aquifers, weak water infrastructure, and limited institutional coordination. Stakeholders agreed on the urgent need to promote joint solutions, such as artificial aquifer recharge, wastewater reuse, control of illegal wells, and modernization of irrigation canals. It was concluded that water security in Ica requires participatory and multisectoral governance, where the State, businesses, and civil society share responsibilities to ensure equitable and sustainable access to water in the face of the effects of climate change.

References

Andrago,Angelakis, A. N., Asano, T., Bahri, A., Jimenez, B., & Tchobanoglous, G. (2018). Water reuse: From ancient to modern times and the future. Frontiers in Environmental Science, 6, 26. https://doi.org/10.3389/fenvs.2018.00026

Barichivich, J., Gloor, E., Peylin, P., Brienen, R. J. W., Schöngart, J., Espinoza, J. C., & Pattnayak, K. C. (2018). Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science Advances, 4(9), eaat8785. https://doi.org/10.1126/sciadv.aat8785

Budds, J., & Hinojosa, L. (2012). Restructuring and rescaling water governance in mining contexts: The co-production of waterscapes in Peru. Water Alternatives, 5(1), 119–137. https://www.wateralternatives.org/index.php/volume5/v5issue1/161-a5-1-8

Cai, W., Borlace, S., Lengaigne, M., et al. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4(2), 111–116. https://doi.org/10.1038/nclimate2100

Dai, L., Farrelly, M., & Rijke, J. (2022). Assessing the soundness of water governance. International Journal of Water Resources Development, 38(7), 1086–1106. https://doi.org/10.1080/02508060.2022.2048487

Delgado, E., Lazo, J., & Egúsquiza, A. (2025). Modeling and predicting LULC changes in Ica (Peru) 1990–2030. Environmental Sciences Europe, 37, 181. https://doi.org/10.1186/s12302-025-01181-y

Echevin, V., Koseki, S., Espinoza, J. C., & Takahashi, K. (2018). Forcings and evolution of the 2017 Coastal El Niño off northern Peru and Ecuador. Frontiers in Marine Science, 5, 367. https://doi.org/10.3389/fmars.2018.00367

Esteve-Llorens, X., Vázquez-Rowe, I., Moreira, M. T., & Feijoo, G. (2022). Beyond yields: environmental sustainability in Peruvian agro-exports. Science of the Total Environment, 819, 152083. https://doi.org/10.1016/j.scitotenv.2022.152083

Fernández-Escalante, E., Pedraza-García, P., & Calera, A. (2020). Evolution and sustainability of groundwater use from the Ica aquifers for the most profitable agriculture in Peru. Hydrogeology Journal, 28(8), 2601–2621. https://doi.org/10.1007/s10040-020-02176-6

Gómez, R., Del Villar, S., & Montero, E. (2023). Cooperative water-sharing agreements between highlands and coastal users: Tambo–Santiago–Ica basin. International Journal of Water Resources Development, 39(6), 927–948. https://doi.org/10.1080/07900627.2023.2165048

Gonzales, E., Álvarez, V., & Gonzales, K. (2025). Two decades of groundwater variability in Peru using GRACE/GRACE-FO (2003–2023). Applied Sciences, 15(14), 8071. https://doi.org/10.3390/app15148071

Grafton, R. Q., Williams, J., Perry, C. J., et al. (2018). The paradox of irrigation efficiency. Science, 361(6404), 748–750. https://doi.org/10.1126/science.aat9314

Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences, 109(9), 3232–3237. https://doi.org/10.1073/pnas.1109936109

Jaramillo, M. F., & Restrepo, I. (2017). Wastewater reuse in agriculture: A review of its limitations and benefits. Sustainability, 9(10), 1734. https://doi.org/10.3390/su9101734

Lankford, B. A., et al. (2023). Resolving the paradoxes of irrigation efficiency. Agricultural Water Management, 280, 108328. https://doi.org/10.1016/j.agwat.2023.108328

Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577–1600. https://doi.org/10.5194/hess-15-1577-2011

Mekonnen, M. M., & Hoekstra, A. Y. (2014). Water footprint benchmarks for crop production. Ecological Indicators, 46, 214–223. https://doi.org/10.1016/j.ecolind.2014.06.013

Mishra, S., et al. (2023). Use of treated sewage or wastewater as irrigation water: Impacts and opportunities. Case Studies in Chemical and Environmental Engineering, 8, 100428. https://doi.org/10.1016/j.cscee.2023.100428

Nemati, M., et al. (2023). Residential water conservation and the rebound effect. Water Resources Research, 59(12), e2022WR032169. https://doi.org/10.1029/2022WR032169

Opcionales adicionales (apoyan contexto Ica y Perú):

Angelakis, A. N., et al. (2014). Water reuse: Overview of current practices and trends. Water Utility Journal, 8, 67–78. https://www.ewra.net/wuj/pdf/WUJ_2014_08_07.pdf

Oshun, J., et al. (2021). Interdisciplinary water development in the Peruvian Andes (co-producción). Hydrology, 8(3), 112. https://doi.org/10.3390/hydrology8030112

Pei, D., et al. (2024). Agricultural water rebound effect and its driving factors. Agricultural Water Management, 297, 108739. https://doi.org/10.1016/j.agwat.2024.108739

Pronti, A., de Muro, P., & Rota, R. (2024). Land concentration, food exports and water grabbing in the Ica Valley, Peru. World Development, 179, 106378. https://doi.org/10.1016/j.worlddev.2024.106378

Rice, J., Wutich, A., & Westerhoff, P. (2016). Comparing de facto wastewater reuse and its public acceptance. Environmental Science & Policy, 61, 101–112. https://doi.org/10.1016/j.envsci.2016.03.004

Richey, A. S., Thomas, B. F., Lo, M.-H., et al. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5237. https://doi.org/10.1002/2015WR017349

Salmoral, G., et al. (2020). Reconciling irrigation demands for agricultural expansion with environmental sustainability: The case of Ica. Journal of Cleaner Production, 277, 123539. https://doi.org/10.1016/j.jclepro.2020.123539

Scanlon, B. R., et al. (2012). Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proceedings of the National Academy of Sciences, 109(24), 9320–9325. https://doi.org/10.1073/pnas.1200311109

Schwarz, J., et al. (2017). Globalization and the sustainable exploitation of scarce groundwater: The Ica–Villacurí aquifer. Journal of Cleaner Production, 147, 231–241. https://doi.org/10.1016/j.jclepro.2017.01.074

Takahashi, K., et al. (2019). The very strong coastal El Niño in 1925 in the far-eastern Pacific. Climate Dynamics, 52, 7389–7415. https://doi.org/10.1007/s00382-017-3702-1

Underhill, V. (2023). Global Groundwater: California, Palestine and Peru. Water Alternatives, 16(1), 191–203. https://www.water-alternatives.org/index.php/alldoc/articles/vol16/v16issue1/694-a16-1-11/file

Vázquez-Rowe, I., et al. (2016). Environmental profile of green asparagus in a hyper-arid environment. Journal of Cleaner Production, 112, 2505–2517. https://doi.org/10.1016/j.jclepro.2015.10.074

Vázquez-Rowe, I., et al. (2017). Sustainable water management in agriculture under hyper-aridity. Science of the Total Environment, 601–602, 425–437. https://doi.org/10.1016/j.scitotenv.2017.05.161

Xiong, R., et al. (2021). Improving the scientific understanding of the paradox of irrigation efficiency. Water Resources Research, 57(5), e2020WR029397. https://doi.org/10.1029/2020WR029397

Xu, H., et al. (2022). Drivers of the irrigation water rebound effect. Agricultural Water Management, 268, 107681. https://doi.org/10.1016/j.agwat.2022.107681

Yglesias-González, M., et al. (2023). Reflections on the impact and response to the Peruvian 2017 Coastal El Niño. PLOS ONE, 18(9), e0290767. https://doi.org/10.1371/journal.pone.0290767

Published

2025-10-11

Issue

Section

Artículos

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.