Intelligent System Applied to Electronic Waste Recycling with Big Data and IoT: A Case Study in Recycling Companies of Medellín

Authors

  • Luis Carlos Quintero Botero Fundación Universitaria del Área Andina

Keywords:

Big Data, IoT, Economía Circular, Reciclaje Electrónico, Gestión Sostenible, Innovación Tecnológica, Medellín

Abstract

The The main objective of this article is to observe the characteristics and challenges in the use of emerging technologies such as Big Data and the Internet of Things (IoT) in relation to electronic waste recycling systems in three recycling companies in the city of Medellín. This is done using a qualitative multi-case study methodology (Stake, 1995).
The sources of information used are structured into three models: three (3) semi-structured interviews with management personnel, thirty (30) surveys of operational personnel, and direct observation of the three (3) selected companies. This data collection was established in accordance with strict ethical principles, confidentiality clauses, and informed consent.
In the data collection phase, 100% of the estimated sample was achieved. This information demonstrates the total coverage of the qualitative tools, guaranteeing the analytical depth and reliability of the findings.
The results reflect a low implementation of emerging technologies, all within the framework of rudimentary recycling processes, high costs, low training in technological issues, and regulatory and legal gaps in Colombia. However, positive aspects were identified that offer a more encouraging outlook in terms of technological innovation, which could lead to improvements in the operational and administrative efficiency of organizations dedicated to e-waste recycling. The information presented was structured and analyzed using open and axial categorization procedures (Strauss & Corbin, 2002), achieving criteria of theoretical saturation and validity through triangulation (Hernández-Sampieri, Fernández-Collado, & Baptista-Lucio, 2014).
Based on the results obtained, we suggest implementing a management model that leverages emerging technologies, integrating IoT sensors, cloud storage, and predictive algorithm tools (Big Data, AI), which would improve the efficiency of processes related to route traceability, collection, and classification of electronic waste. The use of a model from this perspective would establish the starting point in the local circular economy in relation to the operational management of electronic waste, but with significant potential for implementation at the regional level.

References

Andrago, S., & Arroyo, M. (2021). Economía circular y sostenibilidad empresarial bajo un enfoque 4.0. Revista de Estudios de Gestión Industrial.

Baldé, C. P., Forti, V., Gray, V., Kuehr, R., & Stegmann, P. (2017). The Global E-waste Monitor 2017: Quantities, Flows, and Resources. United Nations University, IAS SCYCLE.

Bousdekis, A., Apostolou, D., & Mentzas, G. (2020). A big data analytics architecture for asset management in process industries. Computers in Industry, 123, 103316.

Bustamante López, F. (2021). Reciclaje y gestión de residuos electrónicos en el marco de Huawei’s global recycling program. Revista de Innovación Tecnológica.

Damasceno, A., Braga, C., Carvalho, F., & Cohen, J. (2021). Implementación y regulación de sistemas de reciclaje de residuos electrónicos. Gestión Ambiental.

García, A., & Iglesias, E. (2018). Tecnologías emergentes y gestión eficiente de residuos. Revista de Gestión Ambiental y Sostenibilidad.

Grandi, A. (2010). Impacto ambiental de los residuos electrónicos y potencial económico de su recuperación. Revista de Economía y Medio Ambiente.

Hernández-Sampieri, R., Fernández-Collado, C., & Baptista-Lucio, P. (2014). Metodología de la investigación (6.ª ed.). McGraw-Hill.

Islam, S. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2021). The internet of things for health care: A comprehensive survey. IEEE Access, 7, 67880–67900.

Kumar, S., Kumar, N., & Thakur, A. S. (2024). Toxicidad y riesgos para la salud de los residuos electrónicos. Journal of Environmental Health Studies.

Kumar, S., Kumar, R., & Thakur, D. (2024). Artificial Intelligence-Based E-Waste Management Framework: Challenges and Future Directions. Sustainable Computing: Informatics and Systems, 38, 100905.

Muñoz, P., & Morales, F. (2023). Capacidad y desafíos del manejo de residuos electrónicos. Revista Latinoamericana de Reciclaje Electrónico.

Premalatha, M., Abbasi, T., & Abbasi, S. A. (2014). Impactos de las prácticas tradicionales de reciclaje y estrategias de mejora. Environmental Science & Technology.

Rodríguez, J., Campo-Valera, M., & Calderón, E. (2023). Ciudades inteligentes y gestión de residuos: El papel del Big Data e IoT. Revista de Tecnología Urbana.

Saberian, M., Dargahi, M., & Hamzeh, A. (2023). IoT-enabled smart waste management: Architecture and implementation challenges. Waste Management, 164, 234–245.

Silva, Y., & Cyranek, G. (2010). Brecha digital y gestión de residuos electrónicos en América Latina. Revista de Política Digital.

Stake, R. E. (1995). The art of case study research. SAGE Publications.

Strauss, A., & Corbin, J. (2002). Bases de la investigación cualitativa: Técnicas y procedimientos para desarrollar la teoría fundamentada (2.ª ed.). Universidad de Antioquia.

Yan, J., & Chen, Z. (2018). Optimización de reciclaje electrónico mediante Big Data e IoT. Journal of Cleaner Production.

Zambrano-Yépez, F., Macías Rueda, A., & Medina Sánchez, J. (2021). Gestión integral de residuos electrónicos: un enfoque colaborativo. Revista de Gestión Pública y Privada.

Published

2025-10-07

Issue

Section

Artículos

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.